歡迎來到江蘇氫港新能源科技有限公司網(wǎng)站!
0512-58588966通過固態(tài)儲存氫,一般通用的反應(yīng)可描述為:
從一般金屬氫化物體系的熱力學(xué)來看,通過范霍夫(Van't Hoff)方程發(fā)現(xiàn)了在給定的平衡壓力下氫的釋放和吸收溫度與反應(yīng)焓變之間的關(guān)系如下:
其中P(H2)和為平衡壓力和1bar的參考壓力, R為氣體常數(shù),T為溫度。ΔHr和ΔSr是反應(yīng)的焓和熵。
當(dāng)平衡壓力為Peq(H2)=1.0 bar時,材料的氫釋放溫度通常被描述為T(1bar)。在這種情況下,范霍夫方程(Van't Hoff)化簡為:
由于兩相共存,將達到依賴于溫度的平衡壓力。隨著β相中氫含量的增加,在同一點達到飽和,壓力隨之增大。在不同溫度下進行各種PCT實驗,可以構(gòu)建PCT圖,該圖可以確定平衡壓力作為溫度的函數(shù)。這就引出創(chuàng)建范霍夫(Van't Hoff)圖,從中可以分別從直線的斜率和交點提取ΔH和ΔS,如上圖2右側(cè)所示。
使用金屬水合物可以達到更高的氫體積和重量密度,從而改善和提高性能。有多達五種金屬的合金可以實現(xiàn)更好的儲氫性能突破,因為其更高的熵會影響氫的釋放。
金屬氫化物是間隙型氫化物,氫占據(jù)金屬結(jié)構(gòu)中的八面體和/或四面體位置,如下圖3所示。
Tetrahedral sites:四面體結(jié)構(gòu)
金屬氫化物的形成導(dǎo)致金屬晶格膨脹達20-30 Vol%(容積比)。為了提高儲氫能力和熱力學(xué)、動力學(xué)性能,開發(fā)了各種類型的金屬氫化物。
體心立方晶格(BCC:body-centered cubic structure)結(jié)構(gòu)的金屬和合金具有比面心立方晶格(FCC:Face Center Cubic/Face-Centered Cubic)和方緊密堆積晶格(HCP:hexagonal close-packed)結(jié)構(gòu)少的緊密堆積結(jié)構(gòu)。在已知的金屬氫化物中,BCC合金的可逆氫容量最大,室溫下可達約 3wt %(質(zhì)量比)。
在數(shù)千次循環(huán)中形成穩(wěn)定有效的鍵的能力是另一個基本條件。使用鎂基合金時,大電位氫釋放的動力學(xué)得到改善。氫與其他元素(如硼、鋁和氮)形成共價鍵,從而能形成具有令人驚異的結(jié)構(gòu)、組成和物理化學(xué)性質(zhì)的新型材料,即復(fù)雜氫化物。通常,這些材料具有較高的儲氫重量和體積密度,但很難達到可逆的氫釋放和吸收。
鋁和硼形成[AlH4]x和 [BH4]x型絡(luò)合氫化配合物。一個電子幾乎從陽離子轉(zhuǎn)移到[AlH4]和[BH4]的陰離子上,而氫則與鋁或硼共價結(jié)合。堿、堿土和許多過渡金屬與硼、鋁形成了種類繁多的輕質(zhì)金屬氫絡(luò)合物,其氫的重量密度比金屬氫化物大一個數(shù)量級。在絡(luò)合氫化物中,氫位于四面體的四角,而四面體的中心是硼或鋁。陰離子[BH4]-和[AlH4]-的負電荷由陽離子(如Li或Na)補償。
總而言之,對于商業(yè)化的固態(tài)儲氫應(yīng)用終端更關(guān)注能量密度、存放壓力和溫度(和使用的便捷性相關(guān))、還有循環(huán)次數(shù)或者壽命,再有更重要的成本問題。就如圖1所示,不同組成的氫化物分布在以重量密度和體積密度為橫縱坐標圖系的不同區(qū)域內(nèi),可以根據(jù)我們追求的目標(體積儲氫密度還是重量儲氫密度)去選用合適的廣義氫化物;另如圖2所示當(dāng)然不同的廣義氫化物有不同的PCT和PCI曲線,通俗理解這些直接決定了存放氫的溫度和壓力;可逆次數(shù)或者中毒等因素引起的壽命問題;還有材料本身的稀缺性以及易獲得性這些都是實際商業(yè)化過程中要考慮的問題。如現(xiàn)狀具體來看常見的鎂基、鈦(鐵)基、礬基、稀土系等都存在著各自的優(yōu)缺點,當(dāng)然目前也在基于以上材料體系做著商業(yè)化的探索。
文章來源:氫眼所見
注:以獲得轉(zhuǎn)載權(quán)
下一篇:綠色氫能綜述